

NATIONAL ENESGY TECHNOLOGY LABORATORY

Fleet-wide, GIS-based analysis of CCS retrofit opportunity

Chris Nichols

Office of Systems, Analyses and Planning, NETL

2010 NETL CO₂ Capture Technology Meeting

September 15th, 2010

Agenda

- Introduction
- Phase I Review
 - Methodology
 - GIS Examples
 - Metrics
 - Analyses
- Phase II Overview
 - Statement of Work Review
 - Comparison to Ph I

Introduction

The Rationale

- Develop a database and Geographic Information Systems (GIS) analysis to model the cost and assist in the assessment of the feasibility of retrofitting/ refurbishing existing coal-fired power plants
- Define sample populations of coal-fired power plants as candidates for potential:
 - Retrofit with CO₂ capture technology
- Use the NETL study, Carbon Dioxide Capture from Existing Coal-Fired Power Plants, (Conesville Study) as a foundation in terms of cost and layout

Introduction (cont)

Phase I

- Conducted from July 2008 September 2009
- Published in January 2010
 - Coal-Fired Power Plants in the United States: Examination of the Costs of Retrofitting with CO2 Capture Technology and the Potential for Improvements in Efficiency
- Primary results of the analysis were cost curves of additional LCOE and cost of capture to retrofit the existing fleet

Phase II

- Period of Performance from July 2010 April 2011
- Will refine sample population and methodology
- Phases I and II performed by Enegis, LLC

Defining the Sample Population

Process

- Calculate Levelized Cost of Electricity (LCOE) using Carbon Capture Model (CCM):
 - Physical Size and Cost Scaling
 - Emissions Controls
 - Recirculating Cooling
 - Construction Difficulty
 - Multiple Units Discount
 - Additional Land Requirements
 - CAPEX
 - OPEX
 - Parasitic Load

Physical Size and Cost Scaling

Physical Size and Cost Scaling

Required equipment geometries were digitized from the **Conesville report** so they could be scaled, relocated, and rotated to accommodate the remaining plants in the sample population

GIS Example – Conesville fully retrofitted

GIS Examples (cont)

GIS Examples (cont)

GIS Examples (cont)

Metrics—Levelized Cost of Electricity

20-Year Levelization Period

- Capital Charge Factor 0.175
- OM Levelization Factor 1.1568
- Fuelstock Levelization Factor 1.1651

LCOE _P	= (C	CF_P)(TPC) + [(LF _{F1})(OC _{F1}) + (LF _{F2})(OC _{F2}) +] + (CF)[(LF _{V1})(OC _{V1}) + (LF _{V2})(OC _{V2}) +] (CF)(KWH)
	Where:	
	LCOE = P = CCF = TIC =	levelized cost of electricity over P years levelization period (e.g., 10, 20, or 30 years) capital charge factor for a levelization period of P years total investment cost [the sum of bare erected costs (includes costs of process equipment, supporting facilities, direct and indirect labor), detailed design costs, construction/project management costs, project contingency, process contingency and technology fees]
	$LF_{Fn} = OC_{Fn} =$	levelization factor for category n <u>fixed</u> operating cost category n <u>fixed</u> operating cost for the initial year of operation (but expressed in "first-year-of-construction" year dollars)
	$CF = LF_{Vn} = OC_{Vn} = KWH = CF = C$	plant capacity factor levelization factor for category n <u>variable</u> operating cost category n <u>variable</u> operating cost at 100% capacity factor for the initial year of operation (but expressed in "first-year-of-construction" year dollars) annual net kilowatt-hours of power generated at 100% capacity factor

Metrics—Captured and Avoided Carbon Cost

CO₂ Capture Cost

 Measures the cost per tonne CO₂ physically removed from a unit's flue gasses

CO₂ Avoided Cost

 Accounts for CO₂ produced in association with makeup power

Measures
 cost per tonne
 CO₂ actually
 avoided to the
 atmosphere

```
 \begin{aligned} \textbf{CO_2 Mitigation Cost} &= (\mathsf{LCOE}_\mathsf{Cp} - \mathsf{LCOE}_\mathsf{Ref}) \, / \, (\mathsf{CO}_\mathsf{2Ref \, emitted} - \mathsf{CO}_\mathsf{2Cp \, emitted}) \\ \textbf{CO_2 Captured Cost} &= (\mathsf{LCOE}_\mathsf{Cp} - \mathsf{LCOE}_\mathsf{Ref}) \, / \, (\mathsf{CO}_\mathsf{2Cp \, produced} - \mathsf{CO}_\mathsf{2Cp \, emitted}) \\ \\ \underline{\mathsf{Where:}} \\ \\ \mathsf{CO_2 \, Mitigation \, Cost} &= & \$/\mathsf{ton \, of \, CO_2 \, avoided} \\ \mathsf{CO_2 \, Captured \, Cost} &= & \$/\mathsf{ton \, of \, CO_2 \, removed} \\ \mathsf{CO_2 \, emitted}) \\ \\ \mathsf{CO_2 \, emitted}) \\ \\ \mathsf{Cop} &= & & \mathsf{Carbon \, dioxide \, (tons/kWh \, at \, plant \, capacity \, factor)} \\ \mathsf{LCOE} &= & & \mathsf{Capture \, plant} \\ \mathsf{Cop} &= & & \mathsf{Capture \, plant} \\ \mathsf{Reference \, plant} \\ \end{aligned}
```

Additional LCOE

Cumulative cost curve for all analyzed coal fired generating units built up from the site-level assessments for three capacity factors

CO₂ Capture Cost

Inflection point around 80% of the fleet indicates a natural break point in likely retrofit opportunity

CO₂ avoided cost

Shape of these curves more irregular due to regional differences in make-up power and CO₂ intensity

Phase 2 of work

Objectives

- Further characterize sample sequestration opportunities (distance and capacity)
- Refine the sample population criteria to operate on unit rather than total plant data
- Expand cost and performance assumptions using recent public analyses
- Incorporates industry input via steering committee
- Incorporate sequestration costs
- Consider additional capture technologies
- Refine construction difficulty criteria

For more information...

NETL Energy Analysis website:

http://www.netl.doe.gov/energyanalyses

Search for "retrofit":

- -Report and appendix of all imagery
- Contact me via phone or email:

Chris Nichols

Christopher.nichols@netl.doe.gov

304 285-4172

